Simulated and In Situ Frost Heave in Seasonally Frozen Soil from a Cold Temperate Broad-Leaved Korean Pine Forest Short Title: Frost Heave in Seasonally Frozen Soil from a Temperate Forest
نویسندگان
چکیده
Frost heave, which is the volumetric expansion of frozen soil, has great ecological significance, since it creates water storage spaces in soils at the beginning of the growing season in cold temperate forests. To understand the characteristics of frost heave in seasonally frozen soil and the factors that impact its extent, we investigated the frost heave rates of forest soil from different depths and with different soil moisture contents, using both lab-based simulation and in situ measurement in a broadleaved Korean pine forest in the Changbai Mountains (northeastern China). We found that frost heave was mainly affected by soil moisture content, soil type, and gravitational pressure. Frost heave rate increased linearly with soil moisture content, and for each 100% increase in soil moisture content, the frost heave rate increased by 41.6% (loam, upper layer), 17.2% (albic soil, middle layer), and 4.6% (loess, lower layer). Under the same soil moisture content, the frost heave rate of loam was highest, whereas that of loess was lowest, and the frost heave of the uppermost 15 cm, which is the biologically enriched layer, accounted for ~55% of the frost heave. As a result, we determined the empirical relationship between frost heave and freezing depth, which is important for interpreting the effects of frost heave on increases in the storage space of forest soils and for calculating changes in soil porosity.
منابع مشابه
A mathematical model of differential frost heave
The O’Neill-Miller model of frost heave, which takes account of a partially frozen fringe between the frozen and unfrozen soil, is used to study the mechanism of differential frost heave, which is a possible cause of earth hummocks and stone circles. In order to facilitate this study, the model must firstly be generalised to three dimensions, which requires a modification, due to Gilpin, of Mil...
متن کاملFrost Heave in Colloidal Soils
We develop a mathematical model of frost heave in colloidal soils. The theory accounts for heave and consolidation, while not requiring a frozen fringe assumption. Two solidification regimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added...
متن کاملSoil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions.
An earlier onset of photosynthesis in spring for boreal forest trees is predicted as the climate warms, yet the importance of soil vs air temperatures for spring recovery remains to be determined. Effects of various soil- and air-temperature conditions on spring recovery of photosynthesis in Scots pine (Pinus sylvestris) seedlings were assessed under controlled environmental conditions. Using w...
متن کاملHeave, settlement and fracture of chalk during physical modelling experiments with temperature cycling above and below 0°C
To elucidate the early stages of heave, settlement and fracture of intact frost-susceptible rock by temperature cycling above and below 0°C, two physical modelling experiments were performed on 10 rectangular blocks 450 mm high of fine-grained, soft limestone. One experiment simulated 21 cycles of bidirectional freezing (upward and downward) of an active layer above permafrost, and the other si...
متن کاملIn Situ Test Study on Freezing Scheme of Freeze-Sealing Pipe Roof Applied to the Gongbei Tunnel in the Hong Kong-Zhuhai-Macau Bridge
In order to solve the water sealing problem of soil between pipes of long distance curved pipe-jacked technology, Freeze-Sealing Pipe Roof (FSPR) as an innovative pre-supporting method in tunnel engineering is being applied to the Gongbei Tunnel in the Hong Kong-Zhuhai-Macau Bridge. The definition of FSPR is that large diameter steel pipes are laid out in a circle around the cross section of tu...
متن کامل